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Conventions
* denotes the discrete convolution operation.
⊛ denotes the discrete time periodic convolution operation.
◦ denotes the discrete time circular convolution operation.

Preliminary Notes

This document is a small set of notes about discrete convolutions compiled by me while I was taking EC ENGR 113:
Digital Signal Processing (Winter Quarter 2022) which was taught by Professor Achuta Kadambi. I have also taken
inspiration from Signals and Systems by Alkin Oktay which was the recommended course reading at the time.
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1 Types of Convolution
Challenge Questions
1) How does circular convolution relate to linear convolution?
2) What can be done to ensure circular convolution result obtained using the DFT method matches the linear
convolution result?

1.1 Linear Convolution
Definition 1.1 (Convolution). Suppose x ∈ Rd, h ∈ Rm. The convolution of x with h, or y ∈ R(m+d−1), is:

y[n] = x[n] ∗ h[n] :=
k=∞∑

k=−∞

x[k]h[n− k]

Proposition 1.2. The convolution operation is commutative (i.e. h[n] ∗ x[n] = x[n] ∗ h[n])

Proof. We have x[n] ∗ h[n] =
k=∞∑

k=−∞
x[k]h[n − k]. Now, define m = n − k. Then, m|n=−∞ = −∞ − k = −∞ and

m|n=∞ = ∞− k = ∞. So, x[n] ∗ h[n] =
m=∞∑

m=−∞
x[n −m]h[m] =

m=∞∑
m=−∞

h[m]x[n −m] = h[n] ∗ x[n]. Thus, it follows

that x[n] ∗ h[n] = h[n] ∗ x[n].

Proposition 1.3. The convolution operation is distributive (i.e. x[n] ∗ (h1[n] + h2[n]) = x[n] ∗ h1[n] + x[n] ∗ h2[n])

Proof. We have x[n] ∗ (h1[n] + h2[n]) =
k=∞∑

k=−∞
x[k](h1[n− k] + h2[n− k]) =

k=∞∑
k=−∞

(x[k]h1[n− k] + x[k]h2[n− k])

=
k=∞∑

k=−∞
x[k]h1[n− k] +

k=∞∑
k=−∞

x[k]h2[n− k] = x[n] ∗ h1[n] + x[n] ∗ h2[n]. Thus, it follows that x[n] ∗ (h1[n] + h2[n]) =

x[n] ∗ h1[n] + x[n] ∗ h2[n]

Proposition 1.4. The convolution operation exhibits the identity property (i.e. x[n] ∗ δ[n−m] = x[n−m])

Proof. We have x[n] ∗ δ[n−m] =
k=∞∑

k=−∞
x[k]δ[(n−m)− k]. Since δ[(n−m)− k] =

{
1, if k = (n−m)
0, if k ̸= (n−m)

}
, we also

have
k=∞∑

k=−∞
x[k]δ[(n −m) − k] = 0 × x[0] + ... + 1 × x[n −m] + ... + 0 × x[d − 1] = x[n −m]. Thus, it follows that

x[n] ∗ δ[n−m] = x[n−m]

Exercise. Given x ∈ Rd where x[n] = 0 for n < N1 or n ≥ (N1 + d) and h ∈ Rm where h[n] = 0 for n < N2 or
n ≥ (N2 + m), show that the convolution of x with h, y ∈ R(m+d−1), can be expressed as:

y[n] = x[n] ∗ h[n] =
k=k2∑
k=k1

x[k]h[n− k]

where k2 = min(N1 + d− 1, n−N2) and k1 = max(N1, n−N2 −m + 1)
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Figure 1: Example signal for exercise 1

Proof. x[n] ∗ h[n] =
∞∑

−∞
x[k]h[n− k]. However, notice that x[k]h[n− k] only contributes to the resultant sum if both

x[k] and h[n− k] are non-zero simultaneously. We know that x[k] is non-zero for N1 ≤ k < (N1 + d) and h[n− k] is
non-zero for n− (N2 + m) < n− k ≤ n−N2 (note the order of the bounds since we are subtracting k from n). Now,
since these bounds are not equal in general we want the greatest lower bound and the least upper bound
which gives that x[k]h[n − k] is nonzero for max(N1, n − (N2 + m) + 1) ≤ k ≤ min(n − N2, (N1 + d) − 1). Note
that the extra -1 and +1 are both due to our original non-inclusive bounds. This allows us to express the convolution as:

y[n] = x[n] ∗ h[n] =
k=k2∑
k=k1

x[k]h[n− k]

where k2 = min(n−N2, N1 + d− 1) and k1 = max(N1, n−N2 −m + 1), thus completing the proof.

1.2 Interpretations of Linear Convolution
An equivalent definition for the convolution operator that may be more intuitive for some people is as follows:

Definition 1.5 (Convolution). Suppose a ∈ Rd, b ∈ Rm. The convolution of a with b, or c ∈ R(m+d−1), is:

c[n] = a[n] ∗ b[n] :=
∑

all i and j with
i+j=n

a[i]b[j]

This formulation gives way to multiple interpretations. A probabilistic interpretation is as follows: A and B are two
discrete random variables such that P (A = i) = a[i] and P (B = j) = b[j] for all i and j. Then, the convolution, c = a∗b is
equivalent to adding two random variables together such that c[n] = P (A+B = n). Let’s set up a theoretical experiment
where is A the value of weighted die 1 and B is the value of weighted die 2 after they are both thrown. We can visualize
this scenario in a probability distribution function table for a weighted die.

x P (A = x), a[x]
1 1/16
2 2/16
3 3/16
4 4/16
5 4/16
6 2/16

x P (B = x), b[x]
1 1/16
2 4/16
3 2/16
4 3/16
5 3/16
6 3/16
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P (A)× P (B) P (B = 1) P (B = 2) P (B = 3) P (B = 4) P (B = 5) P (B = 6)

P (A = 1) 1/256 4/256 2/256 3/256 3/256 3/256

P (A = 2) 2/256 8/256 4/256 6/256 6/256 6/256

P (A = 3) 3/256 12/256 6/256 9/256 9/256 9/256

P (A = 4) 4/256 16/256 8/256 12/256 12/256 12/256

P (A = 5) 4/256 16/256 8/256 12/256 12/256 12/256

P (A = 6) 2/256 8/256 4/256 6/256 6/256 6/256

Now, we are able to see a pattern confirming our intuition:

c[0] = 0 = P (A + B = 0)

c[1] = 0 = P (A + B = 1)

c[2] = a[1]b[1] = 1
256 = P (A + B = 2)

c[3] = a[2]b[1] + a[1]b[2] = 6
256 = P (A + B = 3)

c[4] = a[3]b[1] + a[2]b[2] + a[1]b[3] = 13
256 = P (A + B = 4)

c[5] = a[4]b[1] + a[3]b[2] + a[2]b[3] + a[1]b[4] = 23
256 = P (A + B = 5)

...
Another perspective we can take is viewing the convolution as polynomial multiplication. If a and b are the coefficients

of polynomials p(x) = a[0] + a[1] · x + ... + a[d− 1] · xd−1 and q(x) = b[0] + b[1] · x + ... + b[m− 1] · xm−1, then c = a ∗ b
gives the coefficients of the product polynomial p(x)q(x) = c[0] + c[1] · x + ... + c[m + d− 2] · xm+d−2.

Proof. We know that p(x)q(x) = (a[0] + ... + a[d− 1] · xd−1)(b[0] + ... + b[m− 1] · xm−1). But instead of writing out
each term, lets make a product table of the coefficients of a and b indexed by the order of x. The (n + 1)th anti-
diagonal of this table will give us all the terms of order n, which when summed, gives us the nth coefficient of p(x)q(x).

order of x a[0] a[1] a[2] ... a[d− 2] a[d− 1]

b[0] a[0]b[0] a[1]b[0] a[2]b[0] ... a[d− 2]b[0] a[d− 1]b[0]

b[1] a[0]b[1] a[1]b[1] a[2]b[1] ... a[d− 2]b[1] a[d− 1]b[1]

b[2] a[0]b[2] a[1]b[2] a[2]b[2] ... a[d− 2]b[2] a[d− 1]b[2]
...

...
...

...
. . .

...
...

b[m− 2] a[0]b[m− 2] a[1]b[m− 2] a[2]b[m− 2] ... a[d− 2]b[m− 2] a[d− 1]b[m− 2]

b[m− 1] a[0]b[m− 1] a[1]b[m− 1] a[2]b[m− 1] ... a[d− 2]b[m− 1] a[d− 1]b[m− 1]

Now, using this table, we can see that the 2nd anti-diagonal (line from b[2] to a[2]) which corresponds to the 1st

order coefficients of p(x)q(x) gives:

1st order terms = a[0]b[1] + b[1]a[0] = c[1]

Looking at the 3rd anti-diagonal (line from b[3] to a[3]) which corresponds to the 2nd order coefficients of p(x)q(x)
gives:

2st order terms = a[0]b[2] + b[1]a[1] + b[2]a[0] = c[2]
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It is left as an exercise to the reader to confirm that higher order terms, and the zeroth order term matches that of
the problem statement. For rigor, we give an algebraic proof below:

p(x)q(x) = (a[0] + ... + a[d − 1] · xd−1)(b[0] + ... + b[m − 1] · xm−1) = (
i=d−1∑

i=0
a[i]xi)(

j=m−1∑
j=0

b[j]xj) =

i=d−1∑
i=0

j=m−1∑
j=0

a[i]xib[j]xj =
i=d−1∑

i=0

j=m−1∑
j=0

a[i]b[j]xi+j . Now, to simplify the problem, assume i + j = n for some con-

stant n ∈ N. Then, the nth order term of the product polynomial is
i=d−1∑

i=0

∑
j=n−i

a[i]b[n − i]xn =
i=d∑
i=1

a[i]b[n − i]xn =

(a[n] ∗ b[n])xn = c[n]xn where we eliminated the sum
∑

j=n−i

because the summand doesn’t depend on j. Note that

n ∈ {0, m + d− 2}. Thus, it follows that p(x)q(x) = c[0] + c[1] · x + ... + c[m + d− 2] · xm+d−2.

Lastly, the simplest interpretation of convolution is viewing it as a moving average of b ∈ Rm, for the special case that

our filter a ∈ Rd is a signal such that
d−1∑
i=0

a[i] = 1. For example, let a = [ 1
3 , 1

3 , 1
3 ], b = [0, 2, 5], and c = a ∗ b. Then,

c = [ 1
3 , 1

3 , 1
3 ] ∗ [0, 2, 5] = [(0× 1

3 ), (0× 1
3 + 2× 1

3 ), (0× 1
3 + 2× 1

3 + 5× 1
3 ), (2× 1

3 + 5× 1
3 ), (5× 1

3 )] = [0, 2
3 , 7

3 , 7
3 , 5

3 ].

Notice that we are taking the average of b in the small window defined by a as we slide it across b; starting from
the intersection of a[3] and b[1], ending at the intersection of a[1] and b[3]. As a sanity check, it is easy to confirm that

2∑
i=0

b[i] =
4∑

i=0
c[i] = window length × average of b = 7.

1.3 Periodic Convolution
Definition 1.6 (Periodic Convolution). Suppose x̃ and h̃ are periodic signals with a period of N . The periodic
convolution of x̃ with h̃, or ỹ, is:

ỹ[n] = x̃[n] ⊛ h̃[n] :=
k=N−1∑

k=0
x̃[k]h̃[n− k]

1.4 Circular Convolution
Definition 1.7 (Circular Convolution). Suppose x and h are signals of length N . The circular convolution of x with
h, or y, is:

y[n] = x[n] ◦ h[n] :=
k=N−1∑

k=0
x[k]h[n− k]mod(N)

for n = 0, ..., N − 1

Notice that the definition for the circular convolution is a special case of the periodic convolution. Both formulations
are nearly identical even though are formulated slightly differently. It is left as an exercise to the reader to confirm this.
The challenge questions below provide an example where we compute a circular convolution.

1.5 Challenge Questions
1) How does circular convolution relate to linear convolution?

Answer.
To build intuition let’s define x[n] = {1, 3, 2,−4, 6} and h[n] = {5, 4, 3, 2, 1}. Let’s compute the linear convolution

defined by yl[n] =
k=∞∑

k=−∞
x[k]h[n− k]
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h[n− k]\x[k] x[0] x[1] x[2] x[3] x[4]

h[0− k] 5 · 1 0 0 0 0

h[1− k] 4 · 1 5 · 3 0 0 0

h[2− k] 3 · 1 4 · 3 5 · 2 0 0

h[3− k] 2 · 1 3 · 3 4 · 2 5 · (−4) 0

h[4− k] 1 · 1 2 · 3 3 · 2 4 · (−4) 5 · 6

h[5− k] 0 1 · 3 2 · 2 3 · (−4) 4 · 6

h[6− k] 0 0 1 · 2 2 · (−4) 3 · 6

h[7− k] 0 0 0 1 · (−4) 2 · 5

adding up the elements of the nth row to compute yl[n] gives yl[n] = {5, 19, 25, 1, 27, 19, 12, 8, 6}. Now let’s compute

the circular convolution defined by yc[n] =
k=∞∑

k=−∞
x[k]h[n− k]mod(N)

h[n− k]\x[k] x[0] x[1] x[2] x[3] x[4]

h[0− k] 5 · 1 (1 · 3) (2 · 2) (3 · (−4)) (4 · 6)

h[1− k] 4 · 1 5 · 3 (1 · 2) (2 · (−4)) (3 · 6)

h[2− k] 3 · 1 4 · 3 5 · 2 (1 · (−4)) (2 · 6)

h[3− k] 2 · 1 3 · 3 4 · 2 5 · (−4) (1 · 6)

h[4− k] 1 · 1 2 · 3 3 · 2 4 · (−4) 5 · 6

adding up the elements of the nth row to compute yc[n] gives yc[n] = {24, 31, 33, 5, 276}. Now, notice that both tables
are very similar. In fact, the only difference in the circular convolution table are the new terms that are in parentheses.
Upon a closer look, we notice that the new terms in the row labeled by h[0− k] on the circular convolution table are
the same as that in the row h[5− k] on the linear convolution table. Then it follows that yc[0] = yl[0] + yl[5]. Upon
further examination it easy to deduce yc[n] = yl[n] + yl[n + 5]. Generalizing this, we have

yc[n] =
∞∑

m=−∞
yl[n + mN ]

2) What can be done to ensure circular convolution result obtained using the DFT method matches the linear
convolution result?

Answer. There must be enough samples of the DFT to obtain the linear convolution without corrupting it as the
circular convolution length does not always match that of the linear convolution (due to the mod(N) constraint).
More precisely, both signals x and h need to be long enough to accommodate all samples of yl without any over-
laps. Given x[n] and h[n] with length Nx and Nh, yl[n] = x[n]∗h[n] can be computed using the DFT method as follows:

1. length of yl will be Ny = Nx + Nh − 1, so extend each signal using zero padding.

xp[n] =
{

x[n], if n = 0, ..., Nx − 1
0, if n = Nx, .., Ny − 1

}
hp[n] =

{
h[n], if n = 0, ..., Nh − 1
0, if n = Nh, .., Ny − 1

}
2. Compute DFTs of xp and hp

Xp[k] = DFT{xp[n]}
Hp[k] = DFT{hp[n]}

3. Multiply DFTs to obtain Yp[k]

Yp[k] = Xp[k]Hp[k] (We assume that the reader knows the fact: x[n] ◦ h[n] DFT←−−→ X[k]H[k])

4. Compute IDFT

yp[n] = IDFT{Yp[k]}

The result is the same as the linear convolution. Namely, yp[n] = yl[n] for n = 0, ..., Ny − 1
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